Effects of dichloroacetate infusion on human skeletal muscle metabolism at the onset of exercise.
نویسندگان
چکیده
This study investigated whether dichloroacetate (DCA) decreases the reliance on substrate level phosphorylation during the transition from rest to moderate-intensity exercise in humans. Nine subjects cycled at ∼65% of maximal oxygen uptake (V˙o 2 max) after a saline or DCA (100 mg/kg body wt) infusion, with muscle biopsies taken at rest and at 30 s and 2 and 10 min of exercise. DCA infusion increased pyruvate dehydrogenase (PDH) activation at rest (4.0 ± 0.3 vs. 0.9 ± 0.1 mmol ⋅ kg wet wt-1 ⋅ min-1) and at 30 s (3.6 ± 0.2 vs. 2.5 ± 0.4 mmol ⋅ kg-1 ⋅ min-1) of exercise. As a result, acetyl-CoA (45.9 ± 5.9 vs. 11.3 ± 1.5 μmol/kg dry wt) and acetylcarnitine (13.1 ± 1.0 vs. 1.6 ± 0.3 mmol/kg dry wt) were markedly increased by DCA infusion at rest. These differences were maintained at 30 s and 2 min for both acetyl-CoA and acetylcarnitine. Resting muscle lactate and phosphocreatine (PCr) were not different between trials, but DCA infusion resulted in lower lactate accumulation throughout exercise, especially at 2 min (21.6 ± 3.1 vs. 44.6 ± 8.0 mmol/kg dry wt). PCr utilization in the initial 30 s (16.9 ± 0.4 vs. 31.7 ± 2.6 mmol/kg dry wt) and 2 min (27.8 ± 4.7 vs. 45.1 ± 2.6 mmol/kg dry wt) of exercise was decreased with DCA. This resulted in a lower accumulation of free inorganic phosphate at 30 s (25.4 ± 2.0 vs. 36.4 ± 2.8 mmol/kg dry wt) and 2 min (34.6 ± 4.7 vs. 50.5 ± 2.2 mmol/kg dry wt) with DCA and decreased glycogenolysis over 10 min. The data from this study support the hypothesis that increased provision of substrate by DCA infusion increases oxidative metabolism during the rest-to-work transition, resulting in decreased PCr utilization and an improved cellular energy state at the onset of exercise. The transitory improvement in energy state decreased glycogenolysis and lactate accumulation during moderate-intensity exercise.
منابع مشابه
Dichloroacetate and Human Skeletal Muscle Metabolism
We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879–883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contract...
متن کاملSkeletal muscle metabolism is unaffected by DCA infusion and hyperoxia after onset of intense aerobic exercise.
This study investigated whether hyperoxic breathing (100% O(2)) or increasing oxidative substrate supply [dichloroacetate (DCA) infusion] would increase oxidative phosphorylation and reduce the reliance on substrate phosphorylation at the onset of high-intensity aerobic exercise. Eight male subjects cycled at 90% maximal O(2) uptake (VO(2 max)) for 90 s in three randomized conditions: 1) normox...
متن کاملSkeletal muscle metabolism during high-intensity sprint exercise is unaffected by dichloroacetate or acetate infusion.
This study investigated whether increased provision of oxidative substrate would reduce the reliance on nonoxidative ATP production and/or increase power output during maximal sprint exercise. The provision of oxidative substrate was increased at the onset of exercise by the infusion of acetate (AC; increased resting acetylcarnitine) or dichloroacetate [DCA; increased acetylcarnitine and greate...
متن کاملEffects of PDH activation by dichloroacetate in human skeletal muscle during exercise in hypoxia.
During the onset of exercise in hypoxia, the increased lactate accumulation is associated with a delayed activation of pyruvate dehydrogenase (PDH; Parolin ML, Spreit LL, Hultman E, Hollidge-Horvat MG, Jones NL, and Heigenhauser GJF. Am J Physiol Endocrinol Metab 278: E522-E534, 2000). The present study investigated whether activation of PDH with dichloroacetate (DCA) before exercise would redu...
متن کاملEffect of Aerobic Exercise with Blood Flow Restriction on Mitochondrial Dynamics Proteins of Human Skeletal Muscles
Background: Aerobic exercise with Blood Flow Restriction (BFR) plays an important role in skeletal muscle adaptation; however, the effects of this type of exercise on mitochondrial dynamics proteins are unclear. Objective: The purpose of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamics proteins of human skeletal muscles. Methods: Pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 277 1 Pt 1 شماره
صفحات -
تاریخ انتشار 1999